Using "Hard Probes" – High p_T Particle & Jet Suppression – to Study the QGP

Investigate properties of hot QCD matter at T ~ 150 – 1000 MeV!

Definition of "Hard Probes"

Definition of "Hard" – "relating to radiation that is highly penetrating or energetic"

Definition of "Probe" – "device to explore properties of something that cannot be viewed directly"

"Hard Probes" – "highly penetrating observables (particles, radiation) used to explore properties of matter that cannot be viewed directly!"

Probing Hot QCD Matter with "Hard-Probes"

This is what we wish to "see" and investigate!

Probing Hot QCD Matter with "Hard-Probes"

in this!

<u>ng</u>

Hard Processes

In QCD:

Highly penetrating probes originate from hard processes.

In QCD hard processes are those where perturbative QCD is applicable and are characterized either by:

large momentum transfer Q²

 $(\rightarrow$ 4-momentum transfer squared)

- large transverse momentum p_T
- large mass m scale

(e.g. heavy quark production also at low p_T)

Hard Scattering in Nucleus-Nucleus Collisions

Probing Hot QCD Matter with Hard Probes

Hard Probes with Heavy lons at LHC

PhiEtaW

Embedded event, energy weigthed

High p_T Particles and Jet Rates at LHC

Why Study pp, pA (dA) & A-A Collisions?

Can pp, pA (or dA) and A-A all be understood in a consistent framework?

- Can we separate the initial state from final state? (Is it even possible?) Is the initial state composed of gluon fields? It has to be saturated? But, is it a CGC?
- What is the effect of cold nuclear matter (on final state observables)?
- Can we understand multiplicity and energy dependence of pA & AA?
 e.g. compare high mult pA at LHC & same mult AA at LHC & RHIC
- Can we extract information on parton energy loss mechanisms?

RHIC and LHC Suppression of Charged Particles

Pb-Pb (Au-Au) Central Collisions

CMS, arXiv:1202.2554v1

Reduced α_s **Describes** LHC Trend

R_{AA} at LHC in pQCD:

Suppression described with reduced $\alpha_s!$

Some details remain.

B. Betz & M. Gyulassy, arXiv:1201.0281

<u>At LHC – Hadrons at Very Large p_T Suppressed,</u> <u>Photons, W, Z Are NOT!!!</u>

Deviations from binary scaling of hard collisions:

Dynamical Origin of High p_T Hadron Suppression?

What is the dependence on the type of parton?

For collisional energy loss what about recoil energy?

$$\Delta E_{gluon} > \Delta E_{quark, m=0} > \Delta E_{quark, m>0}$$

Important to measure ΔE of gluons \rightarrow light \rightarrow heavy quarks...

One parameterization of energy loss

$$\hat{q} = \mu^2 / \Lambda$$

 $\hat{q} = 5 - 15 \,\text{GeV}^2 \,/ \,\text{fm}$

from RHIC R_{AA} Data

<u>**R**</u>_{p(d)A} and **R**_{AA} Comparison RHIC and LHC

Absence of Nuclear Modification \rightarrow Initial state effects small

RHIC Au-Au and LHC Pb-Pb

- Suppression ($R_{AuAu} \ll 1$, $R_{PbPb} \ll 1$) \rightarrow Final state effects (hot QCD matter)

$p-Pb \rightarrow Hadrons at Higher p_T at LHC???$

<u>Comparison p-Pb, pp → Hadrons at LHC???</u>

Y-J Lee, QM 2014

Jets in Heavy Ion Collisions at RHIC & LHC

Why measure jets in heavy ion collisions? [inclusive, di-jets, hadron-jet, γ-jet,..]

- Determine the kinematics of the binary hard-scattering (parton-parton) interaction
- Characterize the parton energy loss in the hot QCD medium [Requires detailed measurements for theoretical comparison / understanding]
 - Establish energy-loss mechanisms and modification of fragmentation
 - energy flow within jets, quark vs gluon jet differences
 - flavor and mass dependence
- Study medium response to parton energy loss establish properties of the medium

Jet Reconstruction in Heavy Ion Collisions

FastJet M. Cacciari, G. Salam, G. Soyez JHEP 0804:005 (2008)

 $R \rightarrow resolution$ parameter

2

Jets at the LHC – Di-Jet Energy Imbalance!

3

Δø

<u>Jets at LHC & RHIC – Di-Jet Imbalance!</u>

Momentum and Centrality Dependence

ALICE R_{AA}(jet) ~ CMS R_{AA}(jet) at overlap

Jet Quenching at RHIC

HP 2013

At RHIC: Jets are less suppressed than high p_{T} particles $R_{AuAu}(\pi) \sim 0.2 - 0.3$ for $p_T = 4 - 20$ GeV/c \rightarrow suggests modification of fragmentation function!

Jet Quenching at RHIC vs LHC

<u>RHIC</u>

RHIC Jets less suppressed than LHC Jets at low jet momentum

Momentum Dependence of Jet Quenching

R – "cone size" Dependence of Jet Quenching

 $R^{R}_{CP} / R^{0.2}_{CP}$ increases for larger R \rightarrow more jet energy in larger cones, especially below 100 GeV \rightarrow thus, jet shape changes in central Pb-Pb compared to pp

R – "cone size" Dependence of Jet Quenching

1.8 1.8 R_{AA} (Au+Au/PYTHIA) R_{AA} (Au+Au/PYTHIA) AuAu/Pythia AuAu/Pythia Run 11 Au+Au √s_{NN}=200 GeV, 60 µb⁻¹ Run 11 Au+Au √s_{NN}=200 GeV, 60 μb⁻¹ 1.6 1.6 tracking eff. uncertainty tracking eff. uncertainty 0-10% Central Collisions unfolding uncertainty unfolding uncertainty 0-10% Central Collisions 1.4 1.4 T_{AA} uncertainty T_{AA} uncertainty Anti-k, R = 0.3 Anti-k, R = 0.2 Uncertainties added linearly Uncertainties added linearly 1.2 R=0.3 1.2 R=0.2 p_const > 0.2 GeV/c p_const > 0.2 GeV/c sading > 7.0 GeV/c eading > 7.0 GeV/c 0.8 0.8 A_{reco jet} > 0.2 sr reco iet > 0.09 sr 0.6 0.6 0.4 0.4 STAR Preliminary STAR Preliminary 0.2 0.2 0¹0 0 10 30 15 20 25 15 10 20 25 30 p^{charged} $p_{T, jet}^{charged}$ (GeV/c) (GeV/c) 1.8 R_{AA} (Au+Au/PYTHIA) Run 11 Au+Au √s_{ℕℕ}=200 GeV, 60 μb⁻¹ Anti- k_{T} jet "cone sizes": 1.6 0-10% Central Collisions **STAR** R = 0.2, 0.3, 0.41.4 Anti-k, R = 0.4 R=0.4 1.2 Au+Au p^{const} > 0.2 GeV/c $p_{T}^{leading} > 7.0 \text{ GeV/c}$ 0.8 A_{reco jet} > 0.4 sr 0.6 AuAu/Pythia tracking eff. uncertainty 0.4 unfolding uncertainty STAR Preliminary T_{AA} uncertainty 0.2 Uncertainties added linearly 10 15 20 30 25 35 $p_{T, jet}^{charged}$ (GeV/c)

Charged jets

Charged jets

ALICE ATLAS QM 2014 CMS (black)

Jet R_{p-Pb} & R_{Pb-Pb}

If correct: fragmentation function must be altered or what? Need jet fragmentation function in p-Pb & measurements in pp at √s = 5 TeV for comparison!

Fragmentation Function in Pb-Pb at LHC

<u>QM 2014</u> ATLAS R_{CP} [D(ξ)] CMS R_{Pb-Pb} [D(ξ)] Results consistent

$$z = p_T^{track} / p_T^{jet}$$

Fragmentation Function in Pb-Pb modified compared to pp and central Pb-Pb compared to peripheral Pb-Pb!!

Excess of Low p_T Particles in Jet Cone

Path Length Dependence of Di-jet Topologies

Back-to-back suppression out-of-plane stronger than in-plane

Effect of path length on suppression is experimentally accessible

Path-length Dependent R_{AA}

Centrality and angle relative to plane differences!

Significant v₂ Observed at High p_T

Significant charged particle v_2 (4) observed up to 100 GeV/c

v₂ Observed for High p_T Particles & Jets!

High p_T jet & particle v_2 observed by all three LHC experiments

Significant v₂ Observed for Charged Jets

Charged Jet v₂ Observed up to 100 GeV/c

LHC Suppression of Heavy Flavors

Pions, charm and beauty - Suggestion of a hierarchy!

<u>Heavy Flavor – D-Mesons: R_{pPb} & R_{PbPb}</u>

Identified Particle Ratios vs p_T in pPb & PbPb

Baryon anomaly:

p-Pb <u>similar</u> behavior & pattern to Pb-Pb increase with p_T , peak near $p_T = 3$ GeV/c increased enhancement: $\Lambda/K > p/\pi > K/\pi$

p-Pb ratios increase not as strongly as in Pb-Pb

ALICE, arXiv:1307.6796

<u>**NK Ratios in AA vs p_T at RHIC & LHC**</u>

RHIC and LHC:

Ratios similar for peripheral events.
Ratios differ for central events (Peak in most central collisions at slightly higher p_T at LHC)

• Since μ_{B} << T, RHIC & LHC ratios should be similar.

Can this centrality dependence of ratios at RHIC and LHC be explained by hydro?

<u>**A/K Ratio in Charged Jets in p-Pb**</u>

No baryon/meson enhancement observed in Λ/K^0 within jets Background Λ and K^0 estimated outside jet cone in events w.o. jets

Where does the Energy Go? – LHC & RHIC

Energy appears at large R, wider angles to jet.

pQCD, vacuum fragmentation, thermalization of lost energy?

0.5

1.5

2.5

2

"What Have We Learned" from RHIC & LHC

It's opaque to the most energetic ("hard") probes:

Light & heavy quarks (jets) are suppressed at large p_T Away-side jets quenched and jet energy imbalance p-Pb studies confirm quenching/suppression is final state effect

"What Have We Learned" from RHIC & LHC

It's opaque to the most energetic probes:

Light & heavy quarks are suppressed at large p_T Slight flavor dependence observed in particle suppression High p_T B-jets quenched similarly to inclusive jets Away-side jets quenched and jet energy imbalance Lost energy redistributed to lower p_T particles at larger angles Frag. functions and jet shapes modified (low p_T excess in cone) Angular correlations of di-jets and y-jet not modified Suppression differences vs centrality and angle wrt event plane Non-zero high p_T jet track v_2 (path-length dependence?) p(d)A studies confirm quenching/suppression is final state effect

Need theoretical guidance and direct model comparisons!

Future LHC Heavy Ion Program

Year	Beams	Program	
2013	none	Long Shutdown 1	
2014			
2015	Pb-Pb	Design luminosity ($\approx 250 \mu b^{-1}$)	Energy & Luminosity Increase
2016	Pb-Pb	Design luminosity ($\approx 250 \mu b^{-1}$)	
2017	Pb-Pb	If int. lumi. still insufficient, else	Precision Jet, Heavy Flavor
	p-Pb	at highest possible energy	& Large Statistics E-by-E
2018	none	Long Shutdown 2,	
		ALICE upgrade installation,	
		DS collimators to protect magnets	
2019	Pb-Pb	Operation beyond design luminosity	Upgraded detectors
2020-21	p-Pb	If still priority, else	Precision Jet Heavy Flavor
	Ar-Ar	intensity to be seen from injector	& Large Statistics F-by-F
		commissioning for SPS fixed target	
2022	none	Long Shutdown 3, stochastic cooling?	
>2022	ions	Lumi. production, other ions (U?)	

Ref: J.M. Jowett, LHC Chamonix Meeting 2012

Future at RHIC

Probing the QCD Phase-Diagram

•RHIC Beam Energy Scan: use beam energy as control parameter to vary initial temperature and chemical potential

- •Beam energy range in area of relevance is unique to RHIC!
- •BES-II will deliver precision required to search for signatures of the CEP

1. Beam Energy Scan, Search for Critical Pt.

As energy reduced (above): opacity increases and flow decreases

2. Investigate heavy flavors and jets with new vertex detectors & calorimeters

R_{AA} Summary & Conclusions $\sqrt{s_{NN}}$ = 2.76 TeV Pb-Pb, 0.2 TeV Au-Au $\sqrt{s_{NN}}$ = 5.02 TeV p-Pb, 0.2 TeV d-Au Results $R_{p(d)A}^{charged particles} \sim 1$ for $p_T > 2$ GeV/c, consistent with binary scaling Absence of nuclear modification \rightarrow small initial state effects Described by Saturation (CGC) models, EPS09 with shadowing $R_{pPb}^{D-mesons} \sim 1$ for $p_T = 1.5 - 20$ GeV/c, consistent with binary scaling Described by various models, does not distinguish models $R_{p(d)A}^{charged particles} \sim 1 \text{ but } 10(20)\% \text{ enhancement "bump"} \sim 4 - 6 \text{ GeV/c}$ Primarily in proton (baryon?) channel, associated with baryon anomaly? $R_{pPb}^{charged particles} \sim 1.3 - 1.4$ for $p_T \sim 30 - 100$ GeV/c, reference data needed or ? $R_{AA}^{charged particles} \sim 0.2 - 0.4$ for $p_T = 4 - 100$ GeV/c (smallest for most central) $R_{PbPb}^{} \ \ D\text{-mesons} \gtrsim R_{AA}^{} \ charged \ particles \ for \ p_T$ = 2 - 30 GeV/c $R_{AA}^{angle particles} \rightarrow high p_T particle suppression \rightarrow a final state effect$

 R_{pPb}^{jets} ~ 1 for p_T = 20 - 800 GeV/c Absence of nuclear modification → small initial state effects
 R_{PbPb}^{jets} ~ 0.2 - 0.5 for p_T = 35 - 300 GeV/c (smallest at lowest p_T & for most central) Fragmentation functions modified → jet quenching
 R_{AuAu}^{jets} ~ 0.5 - 0.6 for p_T = 15 - 30 GeV/c (~ flat in p_T & smallest for most central) R_{AuAu}^{jets} ≤ R_{PbPb}^{jets}, smaller R_{AA} for RHIC energy jets thus far R_{AuA}^{jets} → jet quenching → parton energy loss in QCD medium

Particle Ratios: Summary & Conclusions

 $\sqrt{s_{NN}}$ = 5.02 TeV p-Pb, 0.2 TeV d-Au

Results

 $\sqrt{s_{NN}}$ = 2.76 TeV Pb-Pb, 0.2 TeV Au-Au

- Ratios of identified particles (π, K, p, Λ)
 p-Pb ratios similar behavior & pattern to Pb-Pb, do not increase as strongly as Pb-Pb
 Baryon/meson (B/M) ratios increase with p_T, peak near p_T = 3 GeV/c
 Enhancement increases as Λ/K > p/π > K/π
 Baryon/meson ratio peak at slightly higher p_T at LHC
- Λ/K Ratios in jets
 No baryon/meson (Λ/K) enhancement in jets in p-Pb